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Background



History of the IPVT
Budzinski, Curien, Petri (2022): description of the pointless
Voronoi tessellation on H?

D’Achille, Curien, Enriquez, Lyons, Unel (2023): construction
of the ideal Poisson-Voronoi tessellation (IPVT) on H¢

Fraczyk, Mellick, Wilkens (soon): construction of the IPVT

on a higher rank real semisimple Lie group G
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Figure from: Thomas Budzinski, Nicolas Curien, and Bram

Petri, On Cheeger constants of hyperbolic surfaces, arXiv
e-prints (2022), arXiv:2207.00469.



IPVT construction
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Horocones
We call the object on which the IPVT lives a horocone.

The horocone for G = SL(2,R) and X = H? is G modded out
U by the subgroup of upper triangular matrices with ones on the
diagonal, equivalently 0X x R, equipped with Lebesgue
measure. X = 6\/ (4
oSt of Boion cath
Theorem (FMW) 'S e sanS

Any nonamenable locally compact second countable (lcsc)

group has a horocone. (. V(G

For a semisimple real Lie group G the horocone is G /U,

equivalently 0X X R, equipped with a G-invariant measure
unique up to scaling.
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Horocone construction
Fix a basepoint o € X. Let d be a G-invariant metric on X
and m a G-invariant measure on X. Define the space of

“distance-like” functions on X as
ve want o W Duspsnn Lunchimd [ oopte o 9X
D :=cl{z — d(z,y) +tly € X,t € R} CC(X).
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We have G ~ D x:?':t‘h gf(x) == f(g 'x).
: X = D by u(z)(y) = d(x,y) — t, where

For t € R, define i}

yeX. e vvnaliz abov

Let /= m(B(o,t))~! (t = 00 & N 0).
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Horocone construction, continued
The sequence of measures {p}+cr has a non-zero
subsequential weak-* limit p as t — oo whenever (X, d) has

exponential growth.
In particular, such a p exists for any nonamenable lcsc group.

Then p is our desired G-invariant measure on D, and (D, p) is

the horocone for G. =
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Geometric intuition
Consider X = H? and a boundary point ¢ € 9X.

90X can be identified with G/P where G = SL(2,R) and P is

the minimal parabolic subgroup of G. Pm” ’d’“'(‘_f;’ g

Define f,(x) := limy_o d(z,(t)) — d(0,7(t)) € D.
—=

The boundary 0X = G/P is the corresponding equivalence

class of Busemann functions. VDO o (x> ¢ Wy
B B1-/nv. peasre ‘?’l’ P/IOL Lﬁ\/l‘agilw*
Without equivalence, we end up with 0X x R = G/U, where

U is the maximal unimodular subgroup of P.




Horocones and the IPVT
The G-invariant measure p on D determines the Poisson point

process on D:

The limit lim; wll,, where each II,, is a Poisson point process
on X with intensity 7; converges to a Poisson point process on
the horocone G/U with positive intensity.

For z € X, if ]-777&€6‘/|/L
Bgu (z) = min{ By (x)|hU belongs to the Poisson on G/U}

then z lives in the [PV'T cell of gU.



Cost review




How to prove G and its lattices have fixed price one
Use the following theorems from Abert, Mellick (2021):

The Poisson point process action on G has maximal cost out
of all essentially free, measure-preserving actions on G.

¢ Let II be a Poisson point process on G and D a complete and
separable metric space with a G-action. Suppose ®,(II) is a
sequence of measurable and equivariant D-valued factors of I1
such that ®;(IT) weakly converges to a random process T on
D. Then II and II x T have the same cost.
z =

o If G has fixed price one, then so does any lattice in G.



Unbounded walls




Theorem (FMW)

For a higher rank real semisimple Lie group G, each pair of

cells in its IPVT almost-surely share an unbounded wall.

Sketch of the proof

Let II be the Poisson point process on G /U associated to the
IPVT on X. Fix any two points belonging to II; call them
91U, g2U. Define W(r) to be set of points z € X such that:
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840(@) > Byu(z) + 1 for every gU € T\ {1V, 2U}}.
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Sketch of the proof, continued
Define W(r) to be set of points x € X such that:

BglU(m) - BgzU(x) *

and

Bgu(z) > Bgu(x) + r for every gU € 11\ {g1U, g2U } }.

Claim: W(r) is almost-surely unbounded.
3

We start with € X such that §,,(z) = Bg,v(x). Then we
produce an unbounded set contained in W (r) from an action

on x.
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Sketch of the proof, contilgl}”%cl> %‘U'ﬁg:,l
The stabilizer subgroup S := g; U‘g"; YngU 9oy ! fixes g1U, goU

but mixes up almost every other point of II.
E—— rah A - | XCW\
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S is non-compact only when G is higher rank.

Howe-Moore implies lim;_,~ u(B N s;B) = 0 for Borel
Ui —oo HAD 115i5) = |
B C G/U and any escaping sequence {s;}ieny C S.

Set B :={gU € G/U : Byu(x) < Bgiv(z) +7}. M((’J\ {0
T oot ok pebkc (n BTl st arl closer” do X e Y’?s"'bdw

As a consequence of the horocone construction, pu(B) < co.
=
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Sketch of the proof, continued
nlswn

By Howe-Moore, there exists a sﬁlbsequence {si;} € {s:} such
that for large enough j < k, u(s;; BN sy, B) is arbitrarily
small - 3
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Let E; be the event {II(s;; B) = 0}. Vies po>tiive B’

£ O M

We can apply a version of Borel-Cantelli to conclude the E;
occur infinitely often almost-surely. -
L) win

. 1 .
For each E; which occurs, we kiave 5, T € W@ So %s

unbounded almost-surely. v
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